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LETTER TO THE EDITOR 

Multifractal amplitude fluctuations in the transfer-matrix 
approach to the statistics of disordered lattice models? 

Giancarlo Jug 
Theory and Computational Science Group, AFRC-IFRN, Colney Lane, Norwich NR4 
7UA, U K  

Received 15 December 1986 

Abstract. It is shown that the amplitude fluctuations of vector iterates in the transfermatrix 
approach to the statistics of the one-dimensional random king  chain correspond to an 
exact strange set characterised by a multifractal spectrum. The temperature and disorder 
dependence of the spectrum are also investigated. 

There has been increasing interest recently in the characterisation of strange sets in 
terms of a universal distribution of fractal dimensions. Strange sets appear frequently 
(as strange attractors) in the theory of dynamical systems, and their multifractal nature 
is well documented (Benzi et a1 1984, 1985, Jensen et a1 1985, Halsey et a1 1986a, 
Paladin and Vulpiani 1986a, b). The statistical description of fully developed turbulence 
and intermittency is another field of theoretical research that has benefited from the 
concept of multifractal sets of singularities present in the distribution of the velocity 
field (Frisch and Parisi 1983, Benzi et a1 1984). Within the context of condensed matter 
theory, multifractal strange sets arise from the study of disordered systems. Examples 
are represented by the anomalous voltage distribution in random resistor networks (de 
Arcangelis et a1 1985), the growth site distribution in diffusion limited aggregation 
(Turkevitch and Scher 1985, Halsey et al 1986b) and the anomalous scaling of the 
probability density at the localisation threshold in the Anderson model (Castellani 
and Peliti 1986, Paladin and Vulpiani 1986~).  

The purpose of this letter is to point out the existence of an exactly solvable strange 
set (a two-scale Cantor set) in the amplitude fluctuations of the vector iterates of the 
transfer-matrix approach to the statistics of the random exchange Ising model. Disor- 
dered lattice models are central to the theoretical description of properties near phase 
transitions and critical points of fluid and magnetic mixtures. The transfer-matrix 
approach (Nightingale 1982) to disordered lattice statistics (see, e.g., Cheung and 
McMillan 1983) is a useful technique for extracting critical point properties, particularly 
for d = 2 lattice space dimensions. However, a very large number of products of 
random matrices is usually involved in the calculations and this feature can lead in 
some cases (Bouchaud and Le Doussal 1986) to intermittency and sample dependence 
in the results of the iterations. Some of these features seem to be present also in the 
case of the disordered Ising model (Kaski 1981) and a characterisation in terms of a 
multifractal spectrum may help in understanding fluctuations in the transfer-matrix 
method. 

t Work supported by MAFF funding. 
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In McMillan's transfer-matrix approach to the disordered Ising model, one con- 
siders a d-dimensional bar of Ising spins, part of an hypercubic lattice, N sites in 
length and n sites in width. The partition function for a given configuration {Ji, , ,  of 
nearest-neighbour bonds is 

In the above equation, q is the transfer matrix relative to the sections j and j + 1 of 
the bar, 

11 T,({SI,},  {SL+I}) = exp P c Jy.y+l~IJs:+l +c Jl,.#+a,sl,sl+8, [ 
and the sums run over all sites i and nearest neighbours S of the section. Also, y E  is 
the largest Lyapunov exponent (LE) for the growth of an even vector V,. Similarly, 
one can define the largest LE yo for the growth of an odd vector Vo, 

([[O r , ] v o ~ ) ( l v o l ~ - ' = e x P ( ~ ~ o )  N+a: (2) 

so that the correlation length 6 of the bar is determined by 

6 = 1 / ( y E - y O )  

(Cheung and McMillan 1983). This formulation assumes an exponential decay of the 
correlation function at large distances, as well as the self-averaging of the free energy 
and correlation functions in the large N limit. The terms 'even' and 'odd' for an 
iteration vector refer to its canonical expansion in terms of Ising spin operators: 

v({s})= C a ( m , ,  m2,. . . , ~ M ) S ; " ' S ; ' .  . . S? 
(m, =0,11 

where M = n d - '  is the total number of spins in the section. Accordingly, an even 
(odd) vector will satisfy V ( { - S } )  = V ( { S } ) ,  or a ( m , ,  . . . , mM) = 0 for h, odd 
( V ( { - S } )  = - V ( { S } ) ,  or a ( m l , .  . . , m M )  = 0 for Zm,  even). The advantage of this 
representation is that transfer-matrix iterations can be carried out analytically by 
operating with the amplitudes a ( { m , } )  and with their recursion relations. For the 
simplest case of a one-dimensional random exchange chain, these are 

a'(0) = 2 4 0 )  

a ' ( l ) = 2 s a ( l )  
(3)  

with c = cosh(PJ) and s = sinh(PJ) and J a random bond variable with given distribu- 
tion. The L E  defined by equations (1) and (2) can then be extracted from the asymptotic 
behaviour of the iterated amplitudes: 

ao({mi}) =C Ap({mij) 
z 

N-,X lim a N ( < m i > ) = C  exp(Ny,)A,(Imi})+exp(Ny)A({mi}) 
w 

where X, runs over the 2M eigenvectors of the limit matrix r=lim,+,(II;" T,)'", 
while y and A({mi } )  refer to the largest eigenvalue or LE. For N large but finite, the 
evaluation of y E  and yo is therefore affected by the fluctuations of the iterated 
amplitudes. Other formulations of the random transfer-matrix method will present 
similar features. 
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I will now show, for the case of the one-dimensional chain equation ( 3 )  with binary 
distribution P ( J )  = p S ( J  -JA) + ( 1  - p ) S ( J  - J B ) ,  that these fluctuations are multifractal. 
In order to parametrise the fluctuations it is convenient, following Pietronero and 
Siebesma (1986), to associate a subinterval [Xj, X,,,] c [0, 1 3  with a given sequence 
of s iterations {J1 , J2 ,  . . . , Js} and to associate the corresponding value of a , ( m )  with 
this interval. The set of subintervals [X,, Xjtl], with j = 1,2 ,  . . . ,2', is constructed 
recursively by dividing [0, 13 in two intervals [0, p ]  and [ p ,  13 at step s = 1 ,  and 
subsequently by dividing each interval of step s into two intervals proportional to p 
and 1 - p  at step s + 1. In analytic terms, a sequence {aj} = {J1 , J 2 ,  , . . , J , }  of s iterations 
is associated with a number Xj"' given by 

S 

kj"= A($ 
U =  1 

where A,, = 0 for J,, = J A  and A V  = 1 for J ,  = J g .  For s += CO a one to one correspondence 
between [0, 13 and all possible configurations of the infinite chain is established. A 
normalised distribution c is (  m, X )  of the fluctuations is then constructed by introducing 
the average growth LE Y E  and To for the even ( m  = 0) and odd ( m  = 1) amplitudes: 

(arv (0)) = ao(0) exp( W E  1 
( a d l ) )  = ao(l> exp(W0) 

where ( ) denotes the average over all configurations of the {JI , J2 ,  . . . , JN} sequence 
of iterations. Owing to the rigorously log-binomial nature of the probability distribu- 
tion, Y E  and yo are readily evaluated: 

7 E  = pcA + ( - p )cB)l 

'YO = ln[2( psA+ ( -p)sS)l 

with CA,g = cosh(PJA,B), SA,B = sinh(PJ,,,). It should be noticed that use of these average 
growth LE does not lead to the correct formula for the correlation length of the chain 
(Wortis 1974), 

- 70 # t-' = -In[ PtA+ (1  -p)fg] ~ A . B =  sA,B/cA,B. 

The normalised distribution of amplitude fluctuations is then obtained as 

Ci,(O, X )  = exp(--s7,)as(O, X )  

6 ( 1 ,  X )  = exp(-s70)a,(l, X )  

so that ((is(m, X ) )  = 5; dX &( m, X )  = ao( m) = 1. For a pure chain one has (m, X )  = 
1 ;  for a disordered chain, & ( m ,  X )  is a map of the configurational fluctuations of the 
iterated amplitudes after N iterations. Figure 1 represents a',(O, X )  for p = 0.7, pJA = 1 
and p J B  = 0. It is clear that at any step s of the iteration (?,(O, X )  takes s + 1 distinct 
values 

{ ~ ( k S ' } = { C ~ - k C k g / [ ~ C A + ( l - p ) C g ] S ,  k=0, l , . . . , S }  

distributed with frequency (L) over 2' subintervals having s + 1 distinct widths { I ( k p ' }  = 
{ ~ " - ~ ( l  - P ) ~ }  (only even amplitude fluctuations are considered in detail here; for the 
odd amplitude,  SA.^ replaces c A . ~  and absolute values should be taken in the results). 
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Figure 1. Normalised distribution of the fluctuations of the even amplitude after N = 8 
iterations ( p  = 0.7, PJA = 1.0, PJB = 0.0). 

The iterations of a',(O, X )  are strictly self-similar and generate a two-scale Cantor set 
with basic scales I ,  = p and I* = 1 - p and measures 

Pi =PcA/[PcA+(~ - P ) c B I  P2' ( ~ - ~ ) c B / [ ~ ~ A ~ ( ~ - ~ ) c S ~ ~  

After s iterations the measure of the strange set i3( m, X )  is P(ks) = 5 , t ; )  d X  &( m, X )  = 
I ( k s ) Z p ) .  I t  is now trivial to show that this strange set is exactly solvable (in the sense 
of Halsey er a1 (1986a)) by evaluating its partition function: 

where r l (q ,  7) is the generator of this particular Cantor set's partition: 

rI(q, 7) = P:/lT+ P:/I;= [p"-'cX+ ( 1  -p)q-rc~]/[pcA+ (1 - p ) C B ] ' .  (4) 

The multifractal distribution of singularities of the strange set &(O, X )  is now the 
Legendre transform of the function T(q) defined by r , (q ,  7(q)) = 1 ,  or, by virtue of 
equation (4), by 

p4-r"'C1+(i -p )"-" ' ) c~=  [pcA+(1 -p)cB]' 

a = d7(q)/dq ( 5 )  

f(.) = 4 a ) -  4 q ( a ) ) .  

As explained by Halsey er a1 (1986a), the function f ( a )  describes the strange set 
&(m, X )  as an interwoven family of singularities of type a, each distributed over a 
set embedded in [0,1] having fractal dimension f ( a ) .  It can be verified that for the 
pure chain (or for /3 = 0) a = 1 and f ( a )  = 1. For the disordered chain, f ( a )  generally 
assumes the characteristic convex shape having maximum value f =  d = 1 (the 
Euclidean dimension of [O, 11). f( a) can be determined for any values of the parameters 
p ,  pJA and pJB from the numerical solution of equation ( 5 ) .  For values of the parameters 
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not too close to those characterising the pure limit, the simplified analytic treatment 
of Halsey er a1 (1986a) for the two-scale Cantor set can be used, which consists in solving 

a =[In PI + ( r  - 1) In P2]/[ln I ,  + ( r  - 1) In 1 2 ]  
f ( a )  = [ ( r  - 1) In(r- 1) - r In r]/[ln I ,  + ( r  - 1) In I,] 

by elimination of r, where P , ,  P2 ,  I, and I2 are the basic measures and length scales 
of the Cantor set. Figures 2 and 3 show the dependence of the multifractal spectrum 
of a’,(O, X )  on dilution and temperature, respectively, for the diluted Ising chain 
(pJB = 0). It appears that the essential features of f ( a )  depend little on dilution and 
change more rapidly with temperature. In particular, amplitude fluctuations increase 
rapidly as the temperature is lowered, as expected, and as quantified by the spread of 
f ( a ) .  This implies that spin-glass and percolation (both T = 0) transition properties 
may be very difficult to study using the transfer-matrix technique. 

0 . 4  

0 0.8 1.6 2.4 
U 

Figure 2. Dependence on dilution p for the spectrumf(a)  of the fluctuations of the even 
amplitude ( A p  = 0.2, P J ,  = 1.0, PJB = 0.0). 

0 0.8 1.6 2.4 
a 

Figure 3. Dependence on temperature l /p  for the spectrumf(a) ( p = 0.5, J A  = 1 .O, JB = 0.0). 
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Generalisation to an M-site section of the strip or bar of lattice sites is straightfor- 
ward, by proper inclusion of the bonds within a section and of those in between 
sections in the specification of the ‘one-dimensional’ sequence of bonds { J ,  , J 2 ,  , . . , J,5} .  
All the essential features presented for the one-dimensional chain are expected to hold. 
Given the proposed multifractal representation of the spatial intermittency of fully 
developed turbulence (Frisch and Parisi 1983), it is an intriguing question whether the 
multifractal amplitude fluctuations of the transfer-matrix approach to the disordered 
Ising model are in some way related to the apparent intermittency in the evaluation 
of the correlation length of strips by this method (Kaski 1981). Possibly, a more 
controlled study of the critical properties of random king strips and bars may be 
attained by employing the generalised set of exponents { T (  9)). 

This work was started after a fruitful visit to the International School for Advanced 
Studies in Trieste. I am grateful to the staff at ISAS for hospitality and useful discussions 
and to L Pietronero for introducing me to the concept of multifractal sets. 
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